Assessing the Windows 8 Development Platform

Introduction

At the Build conference in September 2011, Microsoft provided
details about their next operating system release, code name
“Windows 8. Leading up to this conference there has been a
fair amount of uncertainty about the future direction of the
Microsoft development platform, including Microsoft .NET and
Silverlight.

Microsoft revealed that Windows 8 supports two broad
categories of application: traditional desktop applications and
the new WinRT, or “Metro” style applications.

The new WinRT API and the Metro style applications it enables
may represent the future of smart client development on
the Windows operating system. However, it is important to
understand that Microsoft stated their clear intent that all
applications that run today on Windows 7 will run in the
Windows 8 desktop environment. This means that applications
built using Silverlight, WPF, Windows Forms, or other existing
technologies will continue to run on Windows 8.

WIinRT is a new operating system programming interface (API),
updated for modern technologies and concepts. It replaces the
aging Win32 API, enabling the creation of applications that can
better take advantage of modern networking, power, and user
experience technologies.

“Metro” is a set of user experience and interaction design
guidelines that Microsoft recommends for WinRT applications.
Microsoft describes Metro as a language for touch-based
applications. To this end, Metro defines a language for touch
gestures comparable to the existing language for mouse
gestures, along with a set of Ul style, animation, and interaction
guidelines for applications.

No current technologies directly map to the WinRT/Metro
environment. The current technology that is closest to WinRT
is Silverlight. Developers using Silverlight today will find that
their skills remain relevant, and that much of their code can be
rewritten for WinRT with reasonable effort.

Developers using WPF and HTML5 today will find that their
skills transfer to WinRT, but it is unlikely that existing WPF or
web application code will easily move to WinRT.

This document will explain the Windows 8 development
environment, based on the current understanding of the
technology. It will then discuss high level migration strategies
from today’s technologies to WinRT.

1 | magenic.com

Metro Style vs. Traditional
Windows Applications

WinRT/Metro style applications differ from the traditional
“Windows” look by eliminating the Windows “chrome” such
as frames, window borders, control corners, etc. in favor a full
screen, immersive experience. Metro style applications are
intended to leverage asynchronous features in the Ul controls
and languages to provide a very “fast and fluid” interface.

Figure 1 is an example of a traditional Windows application.

~—

EN\N00O0 - Hy
é\L‘L.©{}C>~mW .

Something About Us
We're passionate about Software

Unlike many technology companies that
and gone, Magenic wes founded, anmssnu P
by technology people.

Greg Frankenfield and Paul Fridman founded Magenic
over 16 years ago to take their passion for the world’s [l
most effective business software platform and use it

Dt oo T sk gl |
to create success for their clients.

Figure 1. Traditional Windows application

Notice the following Ul elements:

= Title bar with control corners
Ribbon/toolbar with many controls

= Visual scrollbar controls
Status bar with information

= Busy visual appearance
= Window borders even when full screen

Figure 2 shows a typical Metro style application. Notice the
following differences:

m The pageis full screen.

= The page is “chrome” free.

= Visual display is not cluttered, and is easy to read and
understand.

Magenic

Custom solutions that fit. Guaranteed.

Assessing the Windows 8 Development Platform

= There are no large scroll bars. Instead, there are visual
clues that there is more to the right (a well-written Metro

|II

style application only scrolls in the “natural” direction —
in this case left and right).

= The entire experience is “touch ready,” but works with
a keyboard and mouse equally well (e.g. touch is a first
class citizen). Designing for touch will support mouse

and keyboard in most cases.

6 3 =mrrere

S e i
I wrader Currend donditios,

B2 5T 63"
2 Foris lix

C#
VB

NET
4.5 WinRT

Application Model

XAML DirectX

WinRT vs. Win32

The Windows Runtime APl (WinRT) replaces the old Win32
libraries for accessing operating system functions. The WinRT
APl is object oriented, largely asynchronous, and callable easily
by a wide variety of programming languages.

Win32 continues to be supported by Windows 8, and it is what
enables all existing Windows 7 applications to function in the
Windows 8 desktop environment.

Figure 3 illustrates the Windows 8 development platform,
showing the WinRT and Win32 APIs, along with the development
technologies supported by each API.

The Win32 APl continues to support existing technologies,
including:

= Silverlight

= WPF

= Windows Forms

s C++ (MFCand ATL)

= Browser-based applications using HTML, JavaScript,
ActiveX, Flash, and Silverlight

XAML

C# C#
\':] VB

Silverlight
4/5

Win32 API

coM Devices / Printing

HTML

JavaScript

Chakra NET

4.5 Client/Full
Browser

Windows Kernel Services

Figure 3. Windows 8 development platform.

2 | magenic.com

Assessing the Windows 8 Development Platform

The new WinRT API supports the following technologies:

= .NET

m C++

= HTMLS and JavaScript

= Browser-based applications using HTML and JavaScript

The .NET, C++, and HTML5 application models are restricted
to the WIinRT API and functionality allowed within the WinRT
security sandbox. The browser that runs in WinRT does not
allow plug-ins, so custom toolbars, Flash, and Silverlight are all
off limits.

The main advantages to the WinRT API are as follows:

= Sandboxed security model with restricted functionality
that is deemed safe within the sandbox

= Simpler and more stable APl as compared to the older
Win32 API (improved memory management and stability)

= Support for an easy, asynchronous, object-oriented
programming model

= Callable by all supported development tools and
languages

= Easy access to hardware such as the camera, sensors, and
other modern hardware devices in few lines of code

In summary, Windows 8 offers two broad application
development models: WinRT and Win32. The Win32 API allows
existing applications to run on Windows 8. The WinRT API
enables the creation of new applications that can take advantage
of modern hardware, networking, and other services provided
by the new API.

3 | magenic.com

Windows 8 Development Strategy

When considering the impact of Windows 8 on future software
development, the following broad strategies should be evaluated:

1. Continue to use existing technologies, and run the
application in the desktop environment.

2. Create a WinRT/Metro style smart client application that
takes full advantage of the new WinRT and Windows 8
features.

3. Create a browser-based web application that relies on no
plug-ins, so it can run in the browser in both the WinRT
and desktop environments.

The first two options are the most likely options if your current
applications are smart client applications that use WPF,
Silverlight, or Windows Forms.

Although it is possible to write a new web application to replace
existing smart client applications, this involves a completely
different developer skill set, and offers no ability to reuse any
existing code assets. However, it is also the case that web
applications provide the broadest reach of all application types.
Such applications can run on any device with a browser, including
all major platforms and devices, such as Windows, Mac, iPhone,
iPad, Android, etc.

The third option is ideal if your current applications are
web applications, because it is likely that your existing web
applications will continue to offer the same behaviors and value
to the end user in Windows 8 as they do today.

In summary, you must first decide whether to create smart
client applications or web applications. If you decide to create
smart client applications, you must then decide whether to
support WiIinRT, or to build applications for the Win32 desktop
environment.

The remainder of this paper assumes you are considering the
creation of smart client applications on WinRT.

Magenic

Custom solutions that fit. Guaranteed.

Assessing the Windows 8 Development Platform

WPF

C#/VB

£ SMOPUIAN

C#/VB

=
>
o
o
-
(00]

Desktop

Silverlight

Silverlight HTML

C#/VB ASP.NET

HTML

ASP.NET

Figure 4. Mapping current technologies to Windows 8.

Conversion Strategies

No existing technologies map directly to the WinRT platform.
Figure 4 shows how existing technologies map to the Windows 8
development platform.

As you can see, all existing technologies map directly to the
Windows 8 desktop environment. This is illustrated by the green
lines, indicating that these applications are expected to work in
Windows 8 with no effort.

The yellow line for Silverlight indicates that many Silverlight
applications can be migrated to WinRT with reasonable effort.
We will discuss this in more detail later in the paper.

The red line for WPF indicates that migration to WinRT is
possible, but will require more substantial effort.

The red dashed line for HTML indicates that development skills
will transfer, and a limited amount of existing HTML, CSS, and
code assets may apply to WinRT application development.

Applications written using existing technologies will require effort
to migrate to WinRT. For applications written with technologies
other than Silverlight and WPF, the term “rewrite” is probably
more accurate than “migrate”.

4 | magenic.com

Common Migration Scenarios
Silverlight to WinRT .NET

Silverlight provides a reasonable migration path to WinRT. We
come to this conclusion because of the following:

= Silverlight and WinRT use XAML to describe the Ul layout
and interaction.

s The WInRT subset of .NET is not that different from the
existing Silverlight subset of .NET.

= Silverlight and WinRT both require asynchronous
interaction with servers, so Silverlight applications are
already architected and designed to be asynchronous.

It is important to understand that Silverlight applications won’t
“just run” on WinRT. Although they use similar XAML and have
a similar .NET subset, there are enough differences that any
migration effort will require some reworking of the XAML and
application code. We expect substantial XAML and code asset
reuse, but with some effort.

One important consideration is to use clear layering and
separation of concerns when building Silverlight applications.
Applications should avoid all “code-behind” the XAML controls,
and should use the MVVM (model-view-viewmodel) design
pattern to cleanly separate all code from the XAML.

Assessing the Windows 8 Development Platform

WPF to WinRT .NET

WPF shares some common technologies with WinRT (and
Silverlight). These include the XAML language for describing the
Ul layout and interaction, along with the C# or VB languages,
and the .NET base class library.

However, WPF is less likely to provide an easy migration to
WinRT than Silverlight. We come to this conclusion because of
the following:

= WPF provides access to the full .NET API, and it is quite
likely that existing WPF applications make use of .NET
features that don’t exist in WinRT.

s Few WPF applications use asynchronous interaction
with servers, and moving synchronous code to an
asynchronous model usually requires a lot of effort.

Notice that these assumptions can be overcome. If you are
extremely careful to apply some constraints to your use of WPF,
the migration process can be more reasonable. Specifically:

= Avoid using parts of the .NET API that aren’t available in
Silverlight (such as direct file system access).

= Use only asynchronous server access.

= Maintain clear layering and separation of concerns.

= Avoid all “code-behind” the XAML controls, and use the
MVVM design pattern.

By following these guidelines when building WPF applications
today, the chances of reusing existing XAML and code assets
are increased.

Web Applications to WinRT HTML5

Web applications share some common technologies and
concepts with HTML5 smart client applications in WinRT, but
there are fundamental differences. Web applications assume
the use of a web server, and the majority of web application
code typically runs on the web server. An HTML5 smart client
application doesn’t have a web server, and all application code
runs on the client.

Engage Magenic today online at magenic.com
or by calling our sales line at 877.277.1044

Existing web development skills in HTML and CSS layout, along
with JavaScript programming knowledge, will apply to HTML5
WinRT development. Optimistically, it is possible that some
HTML and CSS markup can be moved from a web application to
a WinRT HTMLS5 application, as can any JavaScript code that is
highly focused on user interaction and HTML manipulation.

The high level of architectural difference means that all server-
side code will have to be rewritten into JavaScript in the smart
client application, or refactored into service interfaces that
can be installed on an application server to be called from the
application.

In summary, existing applications will not run in WinRT without
change. Of all current technologies, Silverlight offers the best
potential for migrating code assets. Existing WPF and HTML
skills will carry over to WinRT development, but little or no
existing code assets are likely to carry into the new platform.

Conclusion

The new WinRT APl and Metro style applications it enables
may represent the future of smart client development on the
Windows operating system. Existing applications will continue
to run in the Windows 8 desktop environment. Additionally,
existing web applications that avoid the use of plug-ins will run
in the WinRT web browser.

If you decide that the WinRT and Metro style application model
is a platform you may wish to support in the future, your best
strategic move is to start developing today using Silverlight.
Alternately, you can use WPF with extreme care to emulate the
Silverlight development model.

In any case, existing developer skills in XAML, C#, VB, .NET, and
Silverlight carry forward to WinRT development. The same is
true for HTMLS5, CSS, and JavaScript developer skills.

Contributing authors: Kevin Ford, Jason Bock, Sergey Barskiy,
Stuart Williams, Chris Williams and Rockford Lhotka.

Magenic

Custom solutions that fit. Guaranteed.

5 | magenic.com

woddluadew | 9
‘pesjueiens "1y 1eyl SUON|os woisn)

aluabe

"$39S ||I)S 1IN S98eJ2A3| £ dUOYd SMOPUIM £

*}NoWip aJow |enosdde 2401s dde axew Aew ouop ‘9

‘papasu 2q ||Im walsAs JuswAo|dap e ‘a103s dde ay3 ul 3ou suonedjdde o4 °g

*SWJ0403\\ 9sn 0} uosead Sul||2dwod e S| 31aY3 SSajUN JAIA dSY 9sn [edauad ul ‘ASojouydal Jop|o ue palapisuod Ajjesauad ale swio4qa v
‘ASojouyda1 1eY3 404 195 ||13S [BUIDIUI UE S| D1BY] JI PR123|3S 3q p|nod suonedljdde oJIN SI/STNLH €

‘suonedldde 0419\ ym paxioddns 9q 03 pauue|d aJe sauoyd 8 SMOPUIAM *C

‘spJepueis 9|A1s 043139|A 03 paudisap 9q ued uonedljdde ‘@ininy ay3 Ul PIPa3U SI YN0l §| T

‘papaau uiaqg sa18ojouydal [N 240w JO 0OM} 0} Julod Aew 343y Pa3si| 10U SJ03De} JO SUOLIBUIQUIOD :D)ON

ON ON SSA SSA SOA € SOA ON ON ON ON 19S[|MIS SI/TIALLH [euta1ul 3uoJls sadelana
/ON SOA SoA SoA SOA ON S9A SOA SaA S9A 19S||1S 1IN’ |eudaiul Suouys sadelana
¢ SIA c SIA ON ON ON ¢ SIA ¢ SIA ON SOA SOA | (INDDS "8°9) wawAoldap dde juaid asiidisius spaaN

SaA g SaA oN oN oN SaA SaA oN oN oN uonrnquasip |1e1as alois dde syuoddng

sjuawalinbay |eJauan

S9A SOA ON ON ON SOA SO\ SO SOA SOA sdde juaij2 Yol aALleU S33B3ID

oN oN oN oN oN SaA SaA oN SaA ON ag/1dV SMOpUIA 03 Ssdde syioddng

SOA SOA SOA ON ON S9A SIA 1 SOA 1S2A ON yonoy syioddng

sjuswalinbay uoned|ddy

SO\ SOA SOA ON ON ZS°A ZS°A ON ON ON 9Jigow syoddng
ON ON ON SOA S9A ON ON ON ON ON S350 J49Y30 syoddng
ON ON ON SOA SaA ON ON SOA ON ON Xnurj/soaelA suoddng
ON ON ON SOA SOA SOA SOA SOA SOA SOA JUBWUOJIAUD AJUO 8 SMOpPUIAN [N} S1Hoddng
ON ON ON SOA SaA ON ON SOA SOA SOA | SUOISIDA BNW JUSWIUOJIAUD SMOPUIAA ||N} S1oddng

syuawalinbay SO

SO! | sddy gam
SO! / plodpuy | /ploipuy [pajqeu] Swio4 Y10 13N | ySyuoon swJo4
/ LdM @AneN | Joj ouoln| 3|IOIAI | DAIN dSV gaM | 1YuIm LYUIM |/ y8ipeags 4dM | smopuim juswuoJiaug uoyediddy

asn 01 A3ojouyday I/n

}ey) uosuedwo) Asojouyds] :y xipuaddy

urLiojield Juswdojanaqg g smopuip aYyy) Buissassy

