

Server
Manageability
and Automation
Windows Server 2012

 Windows Server 2012: Server Manageability and Automation 2

Table of contents
Introduction ... 5

Standards-based approach to management in Windows

Server 2012 .. 6

Technical description ... 6

Standard API improvements ... 7

Standard protocols ... 7

Standard management tools .. 8

Comprehensive, resilient, and simple automation with

Windows PowerShell 3.0 .. 9

Technical description ... 9

Robust Session Connectivity... 9

Disconnected Sessions .. 9

Job scheduling .. 10

New features of Windows PowerShell ISE ... 11

Windows PowerShell Workflow.. 13

Cmdlet discovery: Get-Command and module auto-loading .. 18

Syntax simplification ... 18

Script Explorer ... 19

Windows PowerShell Web Access ... 20

Updatable Help ... 21

Session Configuration Files .. 22

RunAs capability ... 22

Default Parameter Values ... 22

New cmdlets .. 23

Summary... 25

 Windows Server 2012: Server Manageability and Automation 3

Multiserver management and feature deployment with

Server Manager ... 26

Technical description ... 26

Improved management through high availability ... 26

Multiserver experience ... 26

Streamlined server configuration and deployment.. 27

Efficient deployment of workloads to a remote server or offline virtual hard disk 27

Installing roles and features on a remote server or offline virtual hard disk ... 28

Batch deployment .. 28

Integration with other management tools ... 29

Server role management across multiple servers ... 29

Remote Desktop Services configuration ... 29

Minimal performance impact.. 29

Requirements .. 30

Remote Server Admin Tools .. 30

Summary... 30

Conclusion ... 31

List of charts, tables, and figures 32

file:///C:/Users/lisa.streit/Desktop/WS%202012%20White%20Paper_Manageability%20and%20Automation.docx%23_Toc331754879

 Windows Server 2012: Server Manageability and Automation 4

Copyright information
© 2012 Microsoft Corporation. All rights reserved. This document is provided "as-is." Information and

views expressed in this document, including URL and other Internet Web site references, may change

without notice. You bear the risk of using it. This document does not provide you with any legal rights to

any intellectual property in any Microsoft product. You may copy and use this document for your internal,

reference purposes. You may modify this document for your internal, reference purposes.

 Windows Server 2012: Server Manageability and Automation 5

Introduction
With Windows Server 2012, Microsoft brings its experience in building and operating public clouds to the

server operating system, helping to make it a dynamic, highly available, and cost-effective platform for

private clouds. Windows Server 2012 offers businesses and hosting providers a basis for a scalable,

dynamic, and multitenant-aware cloud infrastructure that more securely connects across premises and

helps IT to respond to business needs faster and more efficiently.

Windows Server 2012 offers excellent total cost of ownership (TCO) as an integrated platform with

comprehensive, multicomputer manageability. Three ways in which Windows Server 2012 improves

multicomputer management are:

• Standards-based management approach: The focus on industry standards used in Windows Server

2012 enables greater manageability across both Windows and non-Window devices alike.

• Windows PowerShell 3.0: The Windows PowerShell 3.0 command-line interface provides

comprehensive automation capabilities.

• Server Manager: Server Manager in Windows Server 2012 helps you deploy and manage roles and

features on the local server and remote servers, whether physical or virtual.

The following sections provide more detail about these three features of Windows Server 2012.

 Windows Server 2012: Server Manageability and Automation 6

Standards-based approach to

management in Windows

Server 2012
Technical description
Windows Server 2012 improves the management experience within the datacenter and cloud

environment through its enhanced application of standards-based management frameworks. Microsoft

Windows has long supported standards-based management and has participated in organizations such as

the Distributed Management Task Force (DMTF). These efforts have led to the development of Windows

Management Instrumentation (WMI) and Windows Remote Management (WinRM). WMI is the Windows

implementation of a Common Information Model (CIM) object manager, and WinRM is the

implementation of the Web Services Management (WS-Man) protocol. Both CIM and WS-Man are

standards released by the DMTF.

Windows Server 2012 enhances the manageability of datacenters through significant improvements in the

standards-based infrastructure. It does this by delivering application programming interfaces (APIs) that

are easier for developers and IT Pros to use. These APIs provide support for recent standards and add new

kinds of Windows PowerShell cmdlets that make it simpler and more cost-effective to connect to and

manage multiple servers and devices in the datacenter.

Figure 1: Improvements in Windows standards-based management components

 Windows Server 2012: Server Manageability and Automation 7

Standard API improvements
Since the release of WMI, the number of management products and tools that consume its providers has

steadily grown, but this traditionally has not been matched by a proportional increase in providers. The

challenge for developers was that writing a WMI provider required extensive knowledge of Component

Object Model (COM) coding. This made writing providers time consuming, and provided little benefit to

the developer.

In Windows Server 2012, Microsoft introduces the Management Infrastructure APIs for Windows (MI APIs),

which greatly simplify the development of new providers and client applications. These new MI APIs are

available in both native (C/C++) code and managed (.NET) code for client development, and native code

for provider development. The APIs remove the need to do COM coding, and they come with tools that

generate code skeletons and schema from the class definition described in a MOF file. This makes

provider development much easier and allows developers to spend their time on developing the business

logic. A provider written using the new MI APIs can be called from the previous release of WMI, as well as

from any non-Windows client application that uses the current DMTF WS-Man standard to connect to the

Windows Server 2012 system.

In addition, the new MI APIs are updated to adhere to the CIM Infrastructure standard more closely than

the classic WMI APIs, and by default, they use the standard WS-Man protocol for communicating across

servers. Compliance with these standards means that developers can write applications using the MI APIs,

which can manage other Windows servers and any server or device that supports the current DMTF CIM

and protocol standards.

For web developers who want to manage Windows from non-Windows platforms, Windows Server 2012

includes the Management OData IIS Extension. This contains tools and components that simplify building

REST APIs (OData Service endpoints).

OData is a set of URI conventions, tools, components, and libraries for building REST APIs. What makes

the OData services stand out is that they are based on explicit domain models, which define their data

content and behavior. This allows rich client libraries (such as Windows/IoS/Android phones, browsers,

Python, and Java) to be generated automatically, thus simplifying the development of solutions on a wide

range of devices and platforms.

Standard protocols
Another challenge in standards-based management is the definition and availability of a standard

management protocol. With multiple vendors creating multiple management tools and interfaces on

multiple platforms, the complexity of managing these environments continues to grow.

WMI is a standard Common Information Model Object Manager (CIMOM) that hosts many standard class

providers; however, early on, there was not an interoperable management protocol, so WMI used the

Distributed Component Object Model (DCOM). This made it an “island of management” for Windows

managing Windows.

This situation changed with the DMTF’s definition and approval of WS-Man, a SOAP-based, firewall-

friendly protocol that allows a client on any operating system to invoke operations on a standards-

compliant CIMOM running on any platform. Microsoft shipped the first partial implementation of WS-

Man in Windows Server 2003 and named it Windows Remote Management (WinRM).

 Windows Server 2012: Server Manageability and Automation 8

In Windows Server 2012, WinRM has become the default protocol for management. This provides

interoperability with a number of CIMOM and WS-Man stacks available on other platforms, including

Openwsman (Perl, Python, Java, and Ruby Bindings), Wiseman, and OpenPegasus.

Standard management tools
The implementation of WS-Man as a standard protocol further established a foundation on which

standard APIs could be used to make manageability and interoperability easier and more efficient.

One of the goals for Windows Server 2012 has been to help IT Pros manage as many platforms and

devices as possible using Windows PowerShell, as complex datacenter environments include a wide range

of systems running recent versions of Windows and non-Windows operating systems.

The core management components described in this paper—WMI, MI APIs, WinRM, and PowerShell—are

included in the Windows Management Framework 3.0. This downloadable package can be installed on

Windows Server 2008, Windows Server 2008 R2, and Windows 7 systems, and provides them with all of

the updated, standards-compliant functionality in Windows Server 2012.

Windows Server 2012 provides a new PowerShell module called CIM cmdlets that directly corresponds to

the generic CIM operations and is built on top of the MI client .NET APIs. This enables the cmdlets in this

module to manage Windows and non-Windows devices that support the current WS-Man and CIM

standards. Windows Server 2012 also adds support for a new type of cmdlet, known as CIM-Based

cmdlets, which provides developers and scripters the ability to interact with any CIM or WMI provider over

WS-Man—including both existing WMI providers on Windows devices and CIM providers on non-

Windows systems.

In short, the standards-based management approach in Windows Server 2012 enables IT Pros to use

Windows PowerShell and the new standards-compliant features of Windows to manage any device in

their datacenter that supports the current CIM, WS-Man, and OData standards.

 Windows Server 2012: Server Manageability and Automation 9

Comprehensive, resilient, and

simple automation with

Windows PowerShell 3.0
Windows PowerShell 3.0 provides a comprehensive platform to help you manage most server roles and

aspects of the datacenter. In this newest version of Windows PowerShell, sessions to remote servers are

resilient and can withstand various types of interruptions. In addition, learning Windows PowerShell is

now easier than ever through improved cmdlet discovery and simplified, consistent syntax across all

cmdlets.

Technical description
The following sections describe the major features of Windows PowerShell.

Robust Session Connectivity

Long-running tasks, such as deploying a service pack or backing up a database, need to continue even if

the client computer that initiated the requested operation goes down or disconnects.

With Robust Session Connectivity, remote sessions can remain in a connected state for up to four

minutes—even if the client stops responding or becomes inaccessible—and tasks on the managed nodes

continue to run on their own, making the end-to-end system more reliable. If connectivity cannot be

restored within four minutes, execution on the managed nodes is suspended with no loss of data, and

remote sessions automatically transition to a disconnected state, allowing them to be reconnected after

network connectivity is restored. Corruption of application and system state from premature termination

of running tasks due to unexpected client disconnection is virtually eliminated.

Disconnected Sessions

Windows PowerShell 3.0 lets you disconnect and then reconnect to a session without losing state. With

Disconnected Sessions, you can create a session on a remote computer, start a command or job,

disconnect from the session, shut down your computer, and then reconnect to the session from a

different computer at a later time to check the job status or get the results. When administrators are

disconnected from the session, commands and jobs can continue to run.

The functionality of the following cmdlets demonstrates the Disconnected Sessions capability in Windows

PowerShell 3.0:

• Disconnect-PSSession. Disconnects a session connection from a remote computer.

• Connect-PSSession. Reestablishes a session connection with a remote computer.

• Receive-PSSession. By default, resumes execution of a command on a remote session and retrieves

the session output. Implicitly reconnects to session (without Connect-PSSession command).

 Windows Server 2012: Server Manageability and Automation 10

Example:

Start a remote session, disconnect from the session, and exit PowerShell.

PS C:\> $s = New-PSSession -ComputerName srv1 -Name LongSession

PS C:\> $job = Invoke-Command $s { 1..10| % {echo "Long running job - part $_";

sleep 5} } -AsJob

PS C:\> Disconnect-PSSession $s

exit

Start Windows PowerShell on a different computer.

PS C:\> $s = Get-PSSession -ComputerName srv1 -Name LongSession

PS C:\> Receive-PSSession $s

Job scheduling

Windows PowerShell 3.0 allows administrators to schedule jobs to be run at a later time, or according to a

particular schedule. To create a scheduled job, you first create a job definition, which names the job and

specifies the commands that it runs, and then a job trigger, which specifies the job schedule. The

Windows Task Scheduler is used to schedule and start the job and a per-user job repository is used to

store job output so that it is available later in a Windows PowerShell session on the computer.

The following cmdlets are available in the PSScheduledJob module to help you work with scheduled jobs:

• Add-JobTrigger • Enable-ScheduledJob

• Disable-JobTrigger • Get-ScheduledJob

• Get-JobTrigger • Register-ScheduledJob

• Enable-JobTrigger • Set-ScheduledJob

• New-JobTrigger • Unregister-ScheduledJob

• Remove-JobTrigger • Get-ScheduledJobOption

• Set-JobTrigger • New-ScheduledJobOption

• Disable-ScheduledJob • Set-ScheduledJobOption

Jobs can be scheduled to execute based on the following job triggers:

• Once

• Daily

• Weekly

• At startup

• At logon

Example:

$trigger = New-JobTrigger -Daily -At 4am

Register-ScheduledJob -Name MyScheduledJob -ScriptBlock { Get-Process } -Trigger

$trigger

Get-ScheduledJob

You can start a scheduled job manually.

Example:

Start-Job -DefinitionName MyScheduledJob

 Windows Server 2012: Server Manageability and Automation 11

Once the trigger has fired and the job has run, you can work with it the same way you do regular

background jobs.

Example:

Import-Module PSScheduledJob

$j = Get-Job -Name MyScheduledJob

Receive-Job $j

New features of Windows PowerShell ISE

The Windows PowerShell 3.0 Integrated Scripting Environment (ISE) includes many new features to ease

beginning users into Windows PowerShell and provide advanced editing support for scripters. The

following are some of these new features:

• Show-Command pane lets users find and run cmdlets in a dialog box.

Figure 2: Working with cmdlets in Windows PowerShell ISE

 Windows Server 2012: Server Manageability and Automation 12

• IntelliSense provides context-sensitive command completion for cmdlet and script names, parameter

names and enumerated values, and property and method names. IntelliSense also supports paths,

types, and variables.

Figure 3: Context-sensitive command completion with IntelliSense

 Windows Server 2012: Server Manageability and Automation 13

• Snippets are code examples that allow the user to insert reusable text. The built-in snippets include

templates for functions, workflows, and common language patterns so that users do not have to

remember the syntax.

Figure 4: Snippets

• Collapsible regions in scripts and XML files make navigation in long scripts easier.

Windows PowerShell Workflow

IT Pros often automate the management of their multicomputer environments by running sequences of

long-running tasks or workflows that can affect multiple managed computers or devices at the same time.

Windows PowerShell Workflow lets IT Pros and developers apply the benefits of workflows to the

automation capabilities of Windows PowerShell.

A workflow is a sequence of automated steps or activities that execute tasks on or retrieve data from one

or more managed nodes (computers or devices). These activities can include individual commands or

scripts. Windows PowerShell Workflow helps IT Pros and developers to author sequences of multi-

machine management activities (which usually are long-running, repeatable, frequent, parallelizable,

interruptible, stoppable, or restartable) as workflows. By design, workflows can be resumed from an

intentional or accidental suspension or interruption, such as a network outage, reboot, or power loss.

Benefits of Windows PowerShell Workflow

Windows PowerShell Workflow manages the distribution, sequencing, and completion of multicomputer

tasks, freeing users and administrators to focus on higher level tasks. The following list describes some of

the benefits of Windows PowerShell Workflow:

• Take advantage of the PowerShell scripting syntax. IT Pros can reuse their existing PowerShell

scripting skills to author script-based workflows using the extended PowerShell language. Apart from

being easy to author, PowerShell script-based workflows provide the additional benefit of sharing by

simply pasting them into an email or publishing them online.

• Multi-machine management. Simultaneously run long-running tasks as workflows on up to hundreds

of managed nodes. Windows PowerShell Workflow includes a built-in library of common management

parameters for workflows, enabling multi-machine management scenarios such as PSComputerName

and PSConfigurationName.

 Windows Server 2012: Server Manageability and Automation 14

• Single task execution of complex processes. You can combine related scripts or commands that act

on an entire end-to-end scenario into a single workflow. Status and progress of activities with the

workflow are visible at any time.

• Robustness: Automated failure recovery. Windows PowerShell Workflow survives both planned and

unplanned interruption (such as machine reboots or network flakiness). You can suspend workflow

execution and then resume the workflow from the last checkpoint, which is normally the point at which

it was suspended.

• Persistence. Workflow status and data are saved (or “checkpointed”) at specific points defined by its

author, so you can resume the workflow from the last persisted task (or checkpoint), instead of

restarting the workflow from the beginning.

• Connection and action retries. Using workflow common parameters, workflow users can retry the

connections to managed nodes in case of network connection failures. Additionally, workflow authors

can designate specific activities to run again in case of failure on one or more managed nodes (for

example, if one of the computers was down at the time the activity ran).

• Ability to connect and disconnect. Users can connect to and disconnect from the machine running

the workflow, and the workflow will continue to run. For example, you can log off or restart the

computer connected to the workflow machine, and monitor the workflow execution from another

computer (such as a home computer)—all without interrupting the workflow. This is possible as long

the client is running on a different computer than the workflow engine computer.

• Scheduling. Workflow tasks can be scheduled just like any Windows PowerShell cmdlet or script.

• Workflow and connection throttling. Workflow execution and connections to nodes can be

throttled, enabling scalability and high availability scenarios.

When to use Windows PowerShell Workflow instead of a cmdlet/script

In general, you should consider using a workflow instead of a cmdlet/script when you need to meet any of

the following requirements:

• You need to perform a long-running task that combines multiple steps in a sequence.

• You need to perform a task that runs on multiple computers.

• You need to perform a task that requires checkpointing or persistence.

• You need to perform a long-running task that is asynchronous, restartable, parallelizable, or

interruptible.

• You need the task to run at scale or in high availability environments, potentially requiring throttling

and connection pooling.

Writing and running workflows in Windows PowerShell: Examples

Typically, workflows are started from a client computer and are ideal for executing long-running tasks

across multiple target computers. Workflows are like any other Windows PowerShell cmdlet, which means

that you can use the Get-Command cmdlet to discover them, and the Get-Help cmdlet to learn how to

use them.

You can add a workflow to a Windows PowerShell session by defining it at the command line, defining it

in a script and dot sourcing it, or using the Import-Module cmdlet to import a module with a Windows

PowerShell script workflow or a XAML-based workflow. Once imported, the workflow then behaves like

any other PowerShell command in that session.

 Windows Server 2012: Server Manageability and Automation 15

Each step or command inside the workflow is called an activity. Each activity inherits the properties of the

workflow, including the powerful Workflow common parameters mentioned above.

To write a workflow, you can use either the regular PowerShell console or Windows PowerShell ISE. For

example, you can type the following workflow into the Windows PowerShell ISE Command pane:

Workflow Verb-Noun

{

 Write-Output -InputObject "Hello from Workflow!"

}

Notice the new workflow keyword, which indicates that the command is a Windows PowerShell Workflow.

The keyword adds more than 20 new common parameters to the workflow, allowing users to specify

items such as:

• A list of target computers for the workflow (-PSComputerName).

• Credentials to use for running the workflow (-PSCredential).

• Quotas to manage the workflow as the work scales (for example, -PSRunningTimeoutSec).

• Ability to retry the whole workflow or specific activities in case there are connection issues (for

example, PSConnectionRetryCount).

• Ability to persist or checkpoint workflow activities, which will save the workflow metadata, output, and

errors to disk so you can resume workflow execution at given points during the execution (-PSPersist).

To run a workflow, type the workflow name just like you would to run any other Windows PowerShell

command. For example, to run the new workflow we have just created, you can type Verb-Noun at the

Windows PowerShell ISE prompt.

The following is another example workflow, named “LongWorkflow,” that runs for approximately 30

seconds:

Workflow Invoke-LongWorkflow

{

 Write-Output -InputObject "Loading some information..."

 Start-Sleep -Seconds 10

 Write-Output -InputObject "Performing some action..."

 Start-Sleep -Seconds 10

 Write-Output -InputObject "Cleaning up..."

 Start-Sleep -Seconds 10

}

Because this workflow defines a long task, you might want to run it as a background job. To do so, you

can use the AsJob parameter, along with the JobName parameter to assign the "LongWF" name to the

job.

Example:

Invoke-LongWorkflow –AsJob –JobName LongWF

 Windows Server 2012: Server Manageability and Automation 16

The following example is a more complex workflow. This workflow, “Install-VM,” creates virtual machines

on managed nodes, starts the virtual machines, and joins them to a domain (which requires a reboot of

the virtual machines).

Example:

<# This is a long running workflow that installs VMs on a Hyper-V capable host. This

workflow showcases the new PowerShell Workflow feature set of Window PowerShell 3.0.

In this particular example, the managed nodes must be Hyper-V capable with Hyper-V

role/module installed. #>

Workflow that installs VMs on a Hyper-V capable host

workflow Install-VM

{

 param

 (

 # Full path to base Vhd for VMs

 [Parameter(Mandatory=$true)]

 [String]$BaseVhdPath,

 # Prefix for VM names

 [String]$VMNamePrefix = "Demo",

 # Number of VMs to create

 [Int]$VMCount = 3,

 # Domain credential required to join the VMs to a domain

 [Parameter(Mandatory=$true)]

 [System.Management.Automation.PSCredential] $domainCred,

 # Local credential required to connect to VMs before being joined to domain

 [Parameter(Mandatory=$true)]

 [System.Management.Automation.PSCredential] $localCred

)

 # Create VMs in parallel

 foreach -parallel($i in 1..$VMCount)

 {

 # Create the VM name

 [string]$VMName = $VMNamePrefix+$i

 # Full path for the differencing VHDs

 [string]$VhdPath = (Split-Path $BaseVhdPath) + "\" + $VMName +".vhd"

 # Create differencing VHDs

 $DiffVHD = New-VHD -ParentPath $BaseVhdPath -Path $VhdPath

 # Create New VM with the differencing VHD etc

 $null = New-VM -MemoryStartupBytes 1GB -Name $VMName `

 -VHDPath $DiffVHD.Path -SwitchName "InternalSwitch"

 }

 # Save the workflow state and data

 Checkpoint-Workflow

 # Start VMs in parallel and collect their IP addresses

 $IPAddresses = foreach -parallel($i in 1..$VMCount)

 {

 # Create the VM name

 [string]$VMName = $VMNamePrefix+$i

 # Start the VM

 Start-VM -Name $VMName

 # Wait for IP Address to be assigned to each VM.

 # Use Inlinescript to check for VMs IP address

 $VMIP = Inlinescript

 Windows Server 2012: Server Manageability and Automation 17

 {

 (Get-VM -Name $using:VMName).NetWorkAdapters.IPAddresses

 } -DisplayName "Get-VMIPAddress"

 while($VMIP.count -lt 2)

 {

 # Use Inlinescript to check for VMs IP address

 $VMIP = Inlinescript

 {

 (Get-VM -Name $using:VMName).NetWorkAdapters.IPAddresses

 } -DisplayName "Get-VMIPAddress"

 # Notify user via progress stream

 Write-Progress -Id $i -Activity "Get-VMIPAddress on $VMName" `

 -Status "Waiting for IP Address ..."

 # Wait for 5 seconds and retry

 Start-Sleep -Seconds 5;

 }

 $VMIP[0]

 }

 # Show the IPs collected to workflow user

 $IPAddresses

 # Before suspending the workflow (say for checking some settings, freeing up

resources),

 # send mail to senior admin notifying the suspended state of workflow

 Send-MailMessage -From "juniorAdmin@contoso.com" -To "seniorAdmin@contoso.com" `

 -SMTPServer "your SMTP sever" -PSComputerName "" `

 -Subject "Suspended workflow $jobCommandName requires

attention" `

 -Body `

 @"

 A workflow running on $hostname with name $jobCommandName requires your

attention.

 Please use Resume-Job cmdlet to resume the workflow execution

"@

 # Suspend the workflow execution

 Suspend-Workflow

 # Call the Join-Domain workflow to join the VMs to the domain

 Join-Domain -PSComputerName $IPAddresses -PSCredential $localCred -domainCred

$domainCred

 # Send mail to senior admin notifying the completion of workflow

 Send-MailMessage -From "juniorAdmin@contoso.com" -To "seniorAdmin@contoso.com" `

 -SMTPServer "your SMTP sever" -PSComputerName "" `

 -Subject "Workflow $parentjobname with

InstanceID:$parenetjobinstanceid has completed" `

 -Body ` `

 @"

 A workflow running on $hostname with name $jobCommandName completed

successfully.

 Please use Receive-Job cmdlet to see the output of workflow execution

"@

}

Workflow that will join a machine to a domain

workflow Join-Domain

{

 param(

 Windows Server 2012: Server Manageability and Automation 18

 [string] $domainName="fourthcoffee.com",

 [Parameter(Mandatory=$true)]

 [System.Management.Automation.PSCredential] $domainCred

)

 # Check that the machine is joined to WORKGROUP

 Get-CimInstance -ClassName CIM_ComputerSystem

 # Add the machine to domain and restart

 Add-Computer -DomainName $domainName -LocalCredential $PSCredential -Credential

$domainCred

 Restart-Computer -Wait -For WinRM -Force -Protocol WSMan

 # Notice that now it is joined to domain!

 Get-CimInstance -ClassName CIM_ComputerSystem

}

Cmdlet discovery: Get-Command and module auto-loading

Windows Server 2012 includes more than 2,300 cmdlets that you can easily find and learn. Modules are

easier than ever to find, explore, create, and use, and users no longer have to import modules manually to

use cmdlets. Users can run a cmdlet, and Windows PowerShell will automatically import the module. In

addition, the Get-Command has been updated to find all cmdlets installed on the system. For example, to

find all networking cmdlets, you can run Get-Command *-Net*.

Syntax simplification

Windows PowerShell 3.0 includes simplified, consistent syntax across all cmdlets. The ForEach-Object and

Where-Object cmdlets have been updated to support an intuitive command structure that more closely

models natural language. Users are able to construct commands without script block, braces, current

object automatic variable ($_), or dot operators to get properties and methods. In short, the “punctuation”

that plagued beginning users is no longer required.

PowerShell 2.0 Where-Object syntax:

get-process | where {$_.handles –gt 800}

PowerShell 3.0 simplified Where-Object syntax:

get-process | where handles –gt 800

PowerShell 2.0 ForEach-Object syntax:

get-process | foreach {$_.name}

PowerShell 3.0 simplified ForEach-Object syntax:

get-process | foreach name

 Windows Server 2012: Server Manageability and Automation 19

Script Explorer

Windows PowerShell 3.0 helps IT Pros by providing access to a community-generated library of Windows

PowerShell scripts, modules, and how-to guidance. To access these scripts, the user needs to install Script

Explorer for Windows PowerShell from the Microsoft Download Center.

Figure 5: Microsoft Script Explorer for Windows PowerShell

http://www.microsoft.com/en-us/download/details.aspx?id=29101

 Windows Server 2012: Server Manageability and Automation 20

Windows PowerShell Web Access

Windows PowerShell Web Access is a new feature in Windows Server 2012 that lets you manage Windows

servers by using Windows PowerShell in a web browser. The target computers to be managed can run any

version of Windows that is enabled for Windows PowerShell remoting.

Figure 6: Windows PowerShell Web Access

 Windows Server 2012: Server Manageability and Automation 21

To manage the remote server through Windows PowerShell in a web browser, you connect to a server

that is running Windows Server 2012 and has the Windows PowerShell Web Access feature installed. This

server acts as a gateway that serves the web pages containing a Windows PowerShell interface to the

remote clients. The following illustration shows this infrastructure:

Figure 7: PowerShell Web Access infrastructure

Updatable Help

Windows PowerShell 2.0 included extensive help topics that were frequently updated online. However,

because the help files were part of the Windows operating system, users could not update them, and the

help topics that were displayed at the command line could soon become outdated. Third-party products

had to convert online help to XML or display outdated help topics.

In Windows PowerShell 3.0, new Update-Help and Save-Help cmdlets download and install the newest

help files for each module. The cmdlets find the help files on the Internet, determine whether they are

newer than local files, unpack them, and then install them in the correct location. The updated files are

ready for immediate use in Get-Help; you do not have to restart Windows PowerShell. Help files for

Windows PowerShell 3.0 are up to date on first use because they do not ship “in the box.” Get-Help

displays auto-generated help for commands, and then prompts you to use the Update-Help cmdlet to

install or update the help files for your modules.

For some environments, such as large enterprises behind Internet firewalls, it is preferable to be able to

update help files from a local share instead of from the Internet. In these cases, you can use Save-Help

–DestinationPath <share> to create a local share that stores the latest Windows PowerShell help files.

Users within the organization can then update their help files by pointing to that share and running

Update-Help –SourcePath <share>.

Updatable Help is available for all modules, including third-party modules, and includes support for

multiple languages.

 Windows Server 2012: Server Manageability and Automation 22

Session Configuration Files

Windows PowerShell simplifies the process of defining a new session configuration by allowing the

administrator to specify the configuration in a declarative manner, using name-value pairs in a PowerShell

data file. For most settings, this is much simpler than writing a PowerShell script. It’s also easier to

understand how a session configuration is defined by inspecting the file.

RunAs capability

When remote administration is delegated, scenarios can result where users lack the credentials required

to perform needed tasks. With Windows PowerShell 3.0, administrators can configure sessions so that

certain commands are run by default with the credentials of a different user. Credentials are stored

securely in the WSMan provider.

For example, to change the credentials under which commands will be executed in the regular PowerShell

endpoint, you would execute the following:

cd WSMan:\localhost\Plugin\microsoft.powershell

$cred = Get-Credential

Set-Item .\RunAsUser $cred

You must restart the Windows Remote Management (WinRM) service for the changes to take effect.

Default Parameter Values

The new $PSDefaultParameterValues preference variable in Windows PowerShell 3.0 lets you specify

default values for cmdlet parameters. You can set values for a parameter on a particular cmdlet or a set of

cmdlets that match a wildcard expression.

The value of $PSDefaultParameterValues is a hash table that consists of a collection of key/value pairs.

Each key consists of a command name and a parameter name separated by a colon. The command name

and/or the parameter name can be enclosed in quotation marks ("CommandName":"ParameterName").

To override a default parameter value, add an explicit parameter value to the command. To disable all

default parameter values, enter the following key/value pair: "Disable=$true".

By default, the value of $PSDefaultParameterValues is session-specific. To set it for all Windows

PowerShell sessions, add the $PSDefaultParameterValues variable to your Windows PowerShell profile.

Example:

$PSDefaultParameterValues=@{Invoke-

Command:ConfigurationName="AdminSession.PowerShell";*-Job:Verbose=$true}

 Windows Server 2012: Server Manageability and Automation 23

New cmdlets

Windows PowerShell 3.0 includes more than 2,300 new cmdlets that expand its power and reach. The

following table includes a partial list of new cmdlets included in Windows PowerShell 3.0.

Table 1: New cmdlets in Windows PowerShell 3.0

cmdlet function

Get-CimAssociatedInstance Gets Common Information Model (CIM) instances connected to

the given instance via an association.

Get-CimClass Enables the user to enumerate the list of CIM Classes under a

specific namespace.

Register-CimIndicationEvent Subscribes to indications using the Filter Expression or Query

Expression.

Get/New/Remove/Set-CimInstance Gets, creates, removes, or edits a CIM instance on the server. For

Get-CimInstance, the instance contains only the properties

specified in the Property parameter, KeyOnly parameter, or the

Select clause of the Query parameter.

Invoke-CimMethod Invokes a method on a CIM object.

Get/New/Remove-CimSession Gets, creates, or removes a CIM session on the client representing

a connection with a remote computer.

New-CimSessionOption Creates an instance of a CimSessionOption, which can be used as

an argument to the New-CimSession cmdlet.

Show-Command Shows a graphical representation of a cmdlet as a Windows form.

Rename-Computer Renames a computer.

Get/Show-ControlPanelItem Gets a list of Control Panel applets installed on the local computer.

Show-ControlPanelItem is used to launch the Control Panel

applet.

Unblock-File Removes the ZoneTransfer alternate NTFS stream (for example,

the “Downloaded From Internet” stream).

 Windows Server 2012: Server Manageability and Automation 24

cmdlet function

Save/Update-Help Save-Help: Exports the currently installed help files to a location

on the File System. Update-Help: Downloads help files from the

Internet or a file share, and then installs them on the local

computer.

Resume/Suspend-Job Suspends or resumes a job. These cmdlets currently only work

with Workflow Jobs.

Add/Disable/Enable/Get/New/

Remove/Set-JobTrigger

Manipulates job triggers that define when a scheduled job will

execute.

ConvertFrom/ConvertTo-Json Converts objects to/from a JSON-formatted string representation.

Connect/Disconnect/Receive-

PSSession

Connects/disconnects from a remote session. Receive-PSSession

resumes execution of a command in a disconnected session and

gets the session output (implicitly reconnecting to the session).

New/Test-

PSSessionConfigurationFile

Creates or validates a PSSession Configuration File that can be

used to create a constrained endpoint.

New-PSTransportOption Creates a new PSTransportOption object.

New-PSWorkflowExecutionOption Creates an object that contains session configuration options for

workflow sessions.

Invoke-RestMethod Makes an HTTP or HTTPS request to a RESTful web service and

returns the response.

Disable/Enable/Get/Register/Set/Un

register-ScheduledJob

Manipulates scheduled jobs on the computer.

Get/New/Set-ScheduledJobOption Gets, creates, or sets an object that can be used to specify

advanced configuration for Scheduled Jobs.

Get/Remove-TypeData Gets or removes TypeData.

Invoke-WebRequest Makes an HTTP or HTTPS request to a web service and returns the

response.

New-WinEvent Creates an event in the event log.

 Windows Server 2012: Server Manageability and Automation 25

Summary
The following features of Windows PowerShell 3.0 offer comprehensive, resilient, and simple automation

of your Windows Servers:

• More than 2,300 new cmdlets that are easy to find and execute.

• Workflows that automate long running tasks across multiple computers in a resilient way.

• Disconnected Sessions to start execution on a computer and return to it later (possibly from another

computer).

• The ability to delegate a set of credentials that will be used when commands are run in certain

sessions.

• Job scheduling that lets you run your scripts and workflows according to your defined schedule and

stores results for later retrieval.

 Windows Server 2012: Server Manageability and Automation 26

Improved management through

high availability

Windows Server 2012 introduces new

storage and networking features that

improve manageability by preventing

downtime by enduring various failures

while maintaining service availability. For

example, Windows Server 2012

introduces Server Message Block (SMB)

3.0, which improves the availability of

server applications through features

such as SMB Transparent Failover and

SMB Multichannel, which make effective,

fault-tolerant use of multiple NICs.

Another feature, NIC Teaming, supports

multichannel traffic and failover for

traffic that is not SMB-based.

For more information about availability

improvements and SMB 3.0, see the white

paper, “Windows Server 2012 Storage.”

For more information about NIC

Teaming, see the white paper, “Windows

Server 2012 Networking.”

Multiserver management and

feature deployment with

Server Manager
In Windows Server 2012, the capabilities of Server Manager have expanded considerably to facilitate

multiserver tasks, such as remote role and feature deployment to both physical and virtual servers, remote

role and feature management, and custom server group creation.

By using Server Manager in Windows Server 2012, IT Pros now can provision servers and offline virtual

hard disks from their desktops without requiring either physical access to the system or Remote Desktop

Protocol (RDP) connections to each server. Server Manager also helps administrators manage groups of

servers collectively from a single, integrated console, allowing them respond to business-critical problems

with greater speed and agility.

Technical description
Server Manager in Windows Server 2012 has evolved to

include many new multiserver management features.

The following sections describe some of these new

capabilities.

Multiserver experience

Server Manager can manage multiple servers in a server

pool, and create server groups to organize them. Groups

let you organize your servers into logical views—for

example, My Seattle Servers or My Test Servers. By

default, Server Manager groups the servers by role.

 Windows Server 2012: Server Manageability and Automation 27

Figure 8: Server group in Server Manager

Streamlined server configuration and deployment

In Windows Server 2012, Server Manager includes configuration functionality previously provided by the

Initial Configuration Tasks window. The result is a single surface for managing the configuration of

Windows Server and its roles and features.

Figure 9: Combined tool functionality in Windows Server 2012 Server Manager

Efficient deployment of workloads to a remote server or offline virtual

hard disk

In Windows Server 2008, roles and features are deployed by using the Add Roles Wizard or Add Features

Wizard in Server Manager running on a local server. This requires either physical access to the server or

Remote Desktop access by using RDP. Installing the Remote Server Administration Tool lets you run

Server Manager on a Windows-based client computer, but adding roles and features is disabled because

remote deployment is not supported.

 Windows Server 2012: Server Manageability and Automation 28

In Windows Server 2012, the deployment capabilities are extended to support robust remote deployment

of roles and features. Using Server Manager in Windows Server 2012, IT Pros can provision servers from

their desktops without requiring either physical access to the systems or the need to enable an RDP

connection to each server.

Installing roles and features on a remote server or offline virtual hard

disk

Windows Server 2012 with Server Manager can deploy both roles and features in a single session using

the unified Add Roles and Features Wizard. The Add Roles and Features Wizard in Windows Server 2012

performs validation passes on a server that you select for deployment as part of the installation process.

You do not need to separately pre-verify that a server is properly configured to support a role.

Administrators can deploy roles and features to remote servers and offline virtual hard disks from Server

Manager. In a single session with the Add Roles and Features Wizard, you can add your desired roles and

features to an offline virtual hard disk, allowing for faster and simpler repetition and consistency of

desired configurations.

With the Add Roles and Features Wizard, the process of installing roles is familiar (and also consistent

with the Add Roles Wizard in earlier Windows Server releases); however, there are some changes. To

support remote deployment and installation on offline virtual hard disks, some roles have moved some

initial configuration (tasks formerly performed in the Add Roles Wizard) into post-installation

configuration wizards. For some offline virtual hard disk deployments, installation tasks are scheduled to

run the first time the virtual machine is started.

Figure 10: Deployment of roles or features to an offline virtual hard disk

Batch deployment

In Windows Server 2012, the Add Roles and Features Wizard lets you export configuration options to an

XML file for later use with Windows PowerShell deployment cmdlets. By using the fan-out capabilities of

Windows PowerShell, you can perform batch deployment of roles and features on multiple remote

servers, applying configuration settings that were saved during a previous wizard-based deployment.

 Windows Server 2012: Server Manageability and Automation 29

Integration with other management tools
Server Manager remains the key access or starting point for server management tools. Where supported,

Server Manager starts these tools in the context of the remote server that you are managing. New,

modern, role-specific tools (such as File Storage Management, Remote Desktop Services, and IP Address

Management) are integrated into the Server Manager console.

Server role management across multiple servers

Management of server roles is improved by shifting from a single-server, single-role model to one in

which multiple server roles can be managed remotely by using a single management application.

Figure 11: Management of server roles (such as File Services) across multiple servers

Remote Desktop Services configuration
Remote Desktop Services provides session virtualization and virtual desktop infrastructure (VDI)

technologies that enable users to access session and virtual desktop collections. In Windows Server 2012,

new management features of Server Manager simplify how Remote Desktop Services is deployed and

managed in a multiserver environment. Scenario-based deployment reduces the complexity of installing

different Remote Desktop Services components across multiple servers based on how Remote Desktop

Services will be used. New multiserver management tools then simplify how administrators manage

different servers that are running Remote Desktop Services role services and virtual desktop

infrastructures.

Minimal performance impact
The Server Manager dashboard has a default 10-minute polling cycle that users can modify in the console.

By using a relatively infrequent default polling cycle and returning only incremental data with each poll,

the performance-load impact on individual servers is minimized. Server Manager uses new WMI providers

and Windows PowerShell cmdlets to pull updated status information from servers.

 Windows Server 2012: Server Manageability and Automation 30

Requirements
Server Manager in Windows Server 2012 requires the following prerequisites to be met:

• Remote deployment is only supported to computers that are running Windows Server 2012. Remote

deployment of roles and features to Windows Server 2008 and earlier versions of Windows is not

supported.

• To remotely manage a server, the value of the Remote Management property must remain Enabled

on the Local Server page in the Server Manager console on that server. (This property is enabled by

default in both Server Manager and Windows PowerShell.)

Note: Server Manager will not run on a Server Core Installation.

Remote Server Admin Tools
The preferred deployment option for Windows Server 2012 is Server Core. As Server Manager requires the

server to be running either the Minimal Server Interface or Server with a GUI, Remote Server Admin Tools

(RSAT) enables IT administrators to manage roles and features installed on computers running Windows

Server 2012 from a remote computer running Windows 8. RSAT is available from the Microsoft Download

Center.

Summary
Windows Server 2012 Server Manager helps to improve manageability in the datacenter so you can:

• Manage multiple servers easily, with a clear and powerful role-centric dashboard.

• Simplify the processes of configuring new servers.

• Deploy roles and features even to remote servers and offline virtual hard disks.

• Consult a single tool for a clear summary of multiple server states.

• Manage Windows Server 2012 from Windows 8 using RSAT.

http://www.microsoft.com/en-us/download/search.aspx?q=RSAT
http://www.microsoft.com/en-us/download/search.aspx?q=RSAT

 Windows Server 2012: Server Manageability and Automation 31

Conclusion
IT Pros today face the challenge of managing and maintaining an increasing number of mission-critical

servers and services, all with fewer resources. Windows Server 2012 addresses this problem by adopting

enhanced standard models, protocols, and APIs, and by offering new and improved features in Windows

PowerShell and Server Manager. Together, these enhancements help administrators manage multiserver

environments more efficiently and cost effectively.

 Windows Server 2012: Server Manageability and Automation 32

List of charts, tables, and

figures
Table 1: New cmdlets in Windows PowerShell 3.0 .. 23

Figure 1: Improvements in Windows standards-based management components 6

Figure 2: Working with cmdlets in Windows PowerShell ISE... 11

Figure 3: Context-sensitive command completion with IntelliSense... 12

Figure 4: Snippets .. 13

Figure 5: Microsoft Script Explorer for Windows PowerShell .. 19

Figure 6: Windows PowerShell Web Access ... 20

Figure 7: PowerShell Web Access infrastructure ... 21

Figure 8: Server group in Server Manager ... 27

Figure 9: Combined tool functionality in Windows Server 2012 Server Manager 27

Figure 10: Deployment of roles or features to an offline virtual hard disk ... 28

Figure 11: Management of server roles (such as File Services) across multiple servers 29

